skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rueda-Becerril, Jesús M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Recently, particle-in-cell (PIC) simulations have shown that relativistic turbulence in collisionless plasmas can result in an equilibrium particle distribution function where turbulent heating is balanced by radiative cooling of electrons. Strongly magnetized plasmas are characterized by higher energy peaks and broader particle distributions. In relativistically moving astrophysical jets, it is believed that the flow is launched Poynting flux dominated and that the resulting magnetic instabilities may create a turbulent environment inside the jet, i.e. the regime of relativistic turbulence. In this paper, we extend previous PIC simulation results to larger values of plasma magnetization by linearly extrapolating the diffusion and advection coefficients relevant for the turbulent plasmas under consideration. We use these results to build a single-zone turbulent jet model that is based on the global parameters of the blazar emission region, and consistently calculate the particle distribution and the resulting emission spectra. We then test our model by comparing its predictions with the broad-band quiescent emission spectra of a dozen blazars. Our results show good agreement with observations of low synchrotron peaked (LSP) sources and find that LSPs are moderately Poynting flux dominated with magnetization 1 ≲ σ ≲ 5, have bulk Lorentz factor Γj ∼ 10–30, and that the turbulent region is located at the edge, or just beyond the broad-line region (BLR). The turbulence is found to be driven at an area comparable to the jet cross-section. 
    more » « less
  2. null (Ed.)
    ABSTRACT The most extreme active galactic nuclei are the radio active ones whose relativistic jet propagates close to our line of sight. These objects were first classified according to their emission-line features into flat-spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). More recently, observations revealed a trend between these objects known as the blazar sequence, along with an anticorrelation between the observed power and the frequency of the synchrotron peak. In this work, we propose a fairly simple idea that could account for the whole blazar population: all jets are launched with similar energy per baryon, independently of their power. In the case of FSRQs, the most powerful jets manage to accelerate to high-bulk Lorentz factors, as observed in the radio. As a result, they have a rather modest magnetization in the emission region, resulting in magnetic reconnection injecting a steep particle–energy distribution and, consequently, steep emission spectra in the γ-rays. For the weaker jets, namely BL Lacs, the opposite holds true; i.e. the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration, and harder emission spectra at frequencies ≳ GeV. In this scenario, we recover all observable properties of blazars with our simulations, including the blazar sequence for models with mild baryon loading (50 ≲ μ ≲ 80). This interpretation of the blazar population therefore tightly constrains the energy per baryon of blazar jets regardless of their accretion rate. 
    more » « less
  3. null (Ed.)